RADIATIVE TRANSFER EQUATION IN NONINERTIAL
COORDINATE SYSTEMS

Yu. I. Morozov

Equations are presented describing the interaction of radiation with matter in conditions of
arbitrarily large nonequilibrium, both in a local satellite system within the framework of
the special theory of relativity, and also in a satellite system based on generalized covari-
ant formalism, The effects of interaction of the radiation generated with the moving mate-
rial have been correctly accounted for. Calculations have been carried out for the case of a
single space coordinate; generalizations to the three-dimensional case is quite easy. In

[1, 3]the motion was computed in a class of inertial systems and an analysis determined the
important effects associated with acceleration and spatial variation of velocity, very typical
for shock waves. In [1,4] it was established how far one may calculate local noninertia in
conditions close to equilibrium, An approximate derivation of the analogous equations for
the case of local noninertia was given in [5].

1. Local Satellite Systems. Since we intend below to proceed to the case of a satellite system, we
choose a metric of two~dimensional space and time in the form very frequently used in the general theory
of relativity

ds* = —(da')? + (dv)2. (1.1

Here ds is the interval between events, dx!is the element of length in the laboratory system Lg, and
T =dx! = cdt is the product of the time interval in the same system, and the speed of light. Then the con-
travariant components of the particle 4-velocity in the system I, take the form

- dxt
ut =>T = Bﬂ, ut =

o
as

1

T yi—e

=9, (1.2

where B is the ratio of particle speed to the speed of light. It follows from Eq. (1.1) that the metric tensor
gik in system L takes the form

=410
i = g — : . .

Thus, the spatial covariant components of all the 4~vectors will differ in sign from the covariant
components, while the time components will agree in sign. For example, u, = -ul, Uy = u’. The relation

(uh)?— (ul)? = 1. {(1.4)
also follows from Egs. (1.1) and (1.2)
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The .local stellite system S, with spatial coordinate ¢! and time coordinate 7, = £,% = cty is related
to the laboratory system L, by Lorentz transformations for differential coordinates

dt! = utdal— uldx, dry = — uldz' -+ udv, (1.5)

It is easy to see that the metric tensor retains the form of Eq. (1.3) in Sg. From Eq. (1.5) the following
derivatives can be found

a8t _ ., 3B _ 1 Ot o1 9% __ 4
Tﬁf— . W_-—u’ ——'azl— ur, ,61: = U (1.6)
From the inverse formulas
dat = utdegt 4 uldr,, dv = utdi! + utdr, s (1.7
we find
gzt [ v _ ot
6?.01_“' jaTo"“—ur W—uf 3{,‘0‘—‘”‘ (1'8)

Formulas (1. 6) and (1.8) define elements of the transformation matrix for tensor components. If qi is
a 4-vector, and qx!, qlJ are tensors of second rank, the transfer formulas will have the form {the subscript
0 denotes the component of a tensor defined in the system Sp):
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Using these formulas, it is easy to obtain the relation between the differential operators in the vari-
ous coordinate systems
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By applying formulas (1.10), it is easy to obtain a relation between the spatial and timewise deriv-
atives of the 4-velocity components in the various systems

dugt _ dut | dul Buo dut | Jur Ougt Jugt
gL o 9’ on, | ot T o L =0, e 0. (1.11)

i can be seen from these formulas that a characteristic of a local satellite system S, in addition
to the fact that u01 =0, u04 =1, is that the tangent vector to the world line of a particle is constant there.

Similarly,
oul u 2(’)ua 1 46uo out u 46u0 ut g Qug'
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Now it is easy to obtain the equations of radiative hydrodynamics in system S;. The tensor for the
en ergy and momentum of an ideal fluid, as is well known, is given by the formula

T = (p + &) uiqrc__gmp (1.13)



where the internal energy € and the pressure p are scalars.
The equations of conservation of momentum and energy are

aTk
dz*

=qi5

(1.14)

Here qi is an 4-vector for the energy and momentum transferred by radiation from the material.

The tensor relation between the components has the form

Th= T ut)? + T 4wh)2, T = (T, + T utut
T4 = T (ul)? 4 T4 ()2, T =p, T4 =¢
¢t = go'u! + go'ut, = g'ut + g'ut .

(1.15)

Therefore the momentum equation in S; can be obtained by replacing Eqs. (1.15}, (1.10) and (1.12), in

Eq. (1.14); the result is that the equation

transforms to the equation

Jugt | dugt
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Similarly, the energy equation

T4 ore
at szt 4
transforms to
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Simultaneous solution of Egs. (1.16) and (1.17) gives

0u0 dugt

agol +(p+ &) 5~ 10 = o', 0T0+( P+ 6)551 = go*.

These equations differ from those in [6] only in that the right sides are nonzero.

The continuity equation in system S; takes the well-known form

fupl
P gr =0

The radiative transfer equations in system L, have the form

610

awik
ozt

= — gt

where WiKis the radiation energy and momentum tensor, and the vector q'is defined above.

la (1.19): we can obtain the relations

{1.16)

(1.17)

(1.18)

{1.19)

(1.20)

From formu-~-



W4 = W044(u4)2 -+ 2u,1u4W014 4+ (u1)2W011
Wi — Wo44u1u4 + W014(u4u4 + ulul) + u1u4W011 (1‘21)
wi — W044(u1)2 4+ 2u1u4W014 + (u4)2W011 .

Using Eq. (1.21) and the foregoing procedure to obtain formulas in system S, we find that the equa-
tions of radiative energy and momentum take the form
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These equations can be reduced to tensor form, which permits generalization to the multi-dimen-
sional case:
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The 4-vector for transfer of material energy and momentum into radiation, allowing for scattering
effects, was obtained earlier in [7]

—qg = oy’ _402 By ottt W o — (cby + o) UgrWo'*. (1.24)

Here By is the Planck function integrated over frequency; o, g are linear coefficients for radiation
absorption and scattering by the undisturbed substance respectively. Using Egs. (1.18) and (1.22), we can
write laws for conservation of the total tensor of energy and momentum of matter and radiation

a . .
W (Tﬂc + Wlk) =1

in the system S, in the form
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These equations, along with the transfer equation (1.23) and the continuity equation (1.19), constitute a
complete system describing the interaction of radiation with matter in a local satellite coordinate system.
It is not a closed system, To close it we must introduce an additional relation between the radiation
energy and momentum tensor components. It is very convenient to obtain Eqs. (1.22) by another method,
directly from the transfer equation. Besides being a proof of the validity of the formula, this method
enables us to follow in detail the physical nature of the additional terms arising, and also to obtain
formulas for radiative viscosity in the case of weak nonequilibrium.

As was shown in [7,8], the transfer equation for the integrated intensity of radiation I in the labora-
tory system L, allowing for scattering processes, has the form

<‘aa? +u 53—) I=— (o + 0o IL + e ()T — 2umPY38 4 (2] (1.26)
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Here u is the cosine of the angle between the direction of motion of the material and the direction of
the incident radiative quantum, and 'po and v, are some characteristic values of material density and veloc-
ity. In conversion to a local satellite system S, in which the material element is at rest, the components
of the radiative energy and momentum tensor wik are transformed according to formulas analogous to
(1.21), while the remaining quantities are transformed according to the following formulas [2]:
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Using thege formulas, we can find that in system S;, the transfer equation takes the form

o . oI :
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Using Eqgs. (1.12), it is easy to obtain the derivative with respect to L
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Therefore, Eq. (1.29) can be rewritten in a more detailed form
Al ol 0 dugt
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Since the quantities Wy © appear in the equations of radiative hydrodynamics, we must integrate Eq.
(1.31) with respect to du,. However, we must take into account that the differential dy; cannot pass under
the differentiation sign, since the differential dup is a fixed quantity. Clearly we must use a more complex
procedure, this being

dits (V@) = Vo (Dodlg) — PV, (dity) = Vo (Ddirg) — Dodiby (1/L%) = v (Pdptg) — 2Dped 1o Volig* o (1.32)

Here @, is an arbitrary function of yy, §01 and Ty, and V; is a spatial or timewise linear differential
operator. In a similar way, using the invariance of p and du, we obtain

VoD = W5 (Re@g) - @y (1 — 1¢®) 7ot (1.39)

Using these rules, we can multiply Eq. (1.31) by dyy and yydyy, and reduce it to a form convenient for
conversion to integral quantities. The result is the two equations
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Converting to components WOik using formulas analogous to (1.27), we obtain Eq. (1.22)
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By the above method we can obtain equations also for the higher moments. For example, introducing
the moments of third and fourth order
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and multiplying Edq. (1.31) by ,uozduo, we can similarly obtain the equation

'
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Equations (1.35) and (1.37) for static conditions (Vy = 0), give the following values of the moments:
W = AB,, W =0, W, =1,4B,.

These values can be obtained for M, and N, by integrating the right sides of Egs. (1.34) with appro-
priate multipliers

My=0,  'No=14B,.

Taking these values of the moments as a zeroth approximation, from Egs. (1.35) and (1.37) we obtain
expressions coinciding with those of [3] with oy = 0 for the first approximation to the three main moments-
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The last term in the expression for Wﬂ is interpreted as the radiative viscosity. All the above
equations retain their form if their derivation begins, not from Eq. (1.26), but from the equation for the
spectral radiative intensity Iy.

2. Satellite System. To define a satellite we use the formalism developed in the work of L. I. Sedov
[9]. We introduce two coordinate systems, an inertial system Kxi, xt= T)with metric (1.1), and 2 moving
satellite system L(£[i] ¢ 4Dwith metric

ds® = grudElIdEF] (2.1)

Coordinates xl, 5[” are chosen in a single pseudo-Euclidean space, i.e., functional relations xi =
xi(¢li] £[1]) exist which define the law of motion of the continuum under consideration. This law can be de-
fined in explicit form if we take into account that the spatial coordinate gli] of the system L coincides with
the Cartesian coordinate xi of system K at some time instant 5[4] = £* ijn the entire three-dimensional
space, while the differentials of the self-times are connected by the Lorentz relations for coincident points,
i.e., for the relation between the coordinates of these systems we obtain, with 5[4] = ¥

dxt = dE 1 -+ yldElel, dr = utdgdl (2.2)
where ul is the 4-velocity of the points of system L relative to K. Thus, system K is some fixed position

of the deformed continuum relative to which the system L moves, described by the fact that the 4~-velocity
of points determined relative to it is given by the expressions

[1]
uld = dTElsL =0, i = E (2.3

ds

Substitution of Egs. (2.2) into the definition (2.1) enables us to obtain the metric tensor gJik]
—1 —u . —1/u®  —utfug?
griny = (_ a1 ) , g[m:(_ Aug Aug ' ) (2.4)

In the system L all the differential operations must be determined in a covarjant manner, for which
we must calculate the Christoffel symbois

i o (aﬁf“] (2.5)
Tae = SoaToetel 50



The first derivatives are determined from Eqgs. (2.2) and the inverse relations
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The second derivatives appearing in Eq. (2.5) are calculated in a somewhat more complex way, es-
pecially the mixed derivatives, for example,
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In Eq. (2.6), as in Eq. (2.7 all the derivatives are taken for 5{4] = ¢* Using these formulas, itis
easy to obtain

1 " 1 44l R
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To obtain relations analogous to (1.12), we can use the relations ulvy! = u4Vu4, following from Eq.
(1.4). Here V is an arbitrary differential operator. Then, introducing symbols for the acceleration and

deformation factors, we obtain

I, =D, Tj =uD, T =F, Ty= u'F
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Since Eq. (2.3),ullvult] = ultlyylt] = o, from the definition of a covariant derivative,
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we find the relations
aul gulll Jul Fulil Jut Jut
Gt = et +0, = FEON +F, sa=uD, 57 = uF. (2.10)
Using the relations ulvyl! = u4Vu4, we have
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These relations enable us to represent the coefficients D and F in any desired form
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In converting to system L all the tensor and vector quantities must be transformed in accordance
with Eq. (1.9), using Eq. (2.6).

The result is easily obtained as

Wh = winl - 2, Wil 4 (W)W, i = u4W[1;1] + ulu“W[“L W = (u4)2W[44],91 - q[11'+ ulq[4], ¢ = u4q[L!
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The moment equations in system L have the form
aw[ak] « m
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In expanded form these equations take the following form
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The hydrodynamic equations will be analogous to Egs. (2.15) and (2.16), if wlikl jg replaced by Tlik],
and qlil by —alt]). 1f we use equations (2.14) or the definition Tkl = (p + gyulllylk] _ gliklp, the tensor com-
ponents TiK become

{ut)?
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By substituting these equations into Eq. (2.16) for T[ik], we obtain the hydrodynamic equations in the
satellite system S in the form
de ut dp 1\e @p ) 1
ST T g (4r) G o (D 20F) + p[D + 2w F 4D (5 )] = g0

us

(2.18)
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It is not difficult to see that in the special case of a motionless point @w!=o0,ut= 1) which corre-
sponds to a local satellite system, we obtain Eq. (1.18). Equations (2.16) and (2.18), together with equa-
tions (2.14) and (2.17), describe the interaction of radiation with a nonuniformly moving deformed con~
tinuum. To close the system of equations we need to postulate a relation between the radiative energy and
momentum tensor components, and the Eddington hypothesis Wl = 1/, w(#] is the best-founded hypothesis
in system S.
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